

Multi-Satellite Beam Hopping Based on Deep Reinforcement Learning for LEO Satellite Systems

Authors: Yifan Xu, Ruili Zhao, Yongyi Ran, Jiangtao Luo

Presenter: Dr. Prof. Jiangtao Luo*

(Chongqing University of Posts and Telecommunications, China)

Dec 12, 2024 · Cape Town, South Africa

Outline

Research Motivation

Background and Challenges

Common Approaches

Existing Methods:

> Borrow single-satellite scheme from GSP system:

- Independent decision-making by different satellites
- seriously beam interference neglected, low resource utilization and load imbalance

Consider inter-satellite interferences:

- Classical approaches:
 - ✓ Dynamic programming [1], Convex optimization[2]
- Solution space increases drastically with the number of satellites and beams, leading to local optima.
- **Poor timeliness and inflexible:** As cover area changes, it requires **re-modeling** and iterative solving.

Deep Reinforcement Learning + Digital Twin

- 1. Y. Wang, M. Zeng, and Z. Fei, "Efficient resource allocation for beam-hopping based multi-satellite communication systems" Electronics, vol. 12, no. 11, 2023.
- Z. Lin, Z. Ni, L. Kuang, C. Jiang, and Z. Huang, "Multi-satellite beam hopping based on load balancing and interference avoidance for NGSO satellite communication systems," IEEE Transactions on Communications, vol. 71, pp. 282–295, Jan 2023.

2025/1/3

Globecom 2024

02 System model & Problem formulation

System model

- Overall architecture

2025/1/3

Globecom 2024

Luo J @CQUPT

System model

- Communication model

The architecture of LEO multi-satellite beam-hopping system

CHONGOING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS

2025/1/3

Globecom 2024

Luo J @CQUPT

Problem formulation

Load gap:

$$\begin{aligned}
\begin{aligned}
& (f_{i}) = \sum_{t=1}^{T} \left(\max_{n \in \mathcal{N}} \{I_{i}^{n}\} - \min_{n \in \mathcal{N}} \{I_{i}^{n}\}\right)(3) & \leftarrow \quad I_{i}^{n} = \sum_{c \in V_{n}} Th_{i}^{n,c} x_{i}^{n,c} \quad (4)
\end{aligned}$$
Average queue delay:

$$\begin{aligned}
& (f_{i}) = \sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{c=1}^{C} \tau_{i}^{n,c} \quad (5)
\end{aligned}$$
Dijective function:

$$\begin{aligned}
& P_{1} : \min\left\{\alpha \frac{G}{G_{\max}} + (1 - \alpha) \frac{J}{J_{\max}}\right\} \quad (6)
\end{aligned}$$
s.t. $Cl: I_{i}^{n} = \sum_{c \in V_{n}} Th_{i}^{n,c} x_{i}^{n,c} \quad n = 1..., N, \\
& C2: \sum_{c=1}^{C} x_{i}^{n,c} \in \{0, 1\}, \forall n, c, t, \\
& C3: x_{i}^{n,c} \in \{0, 1\}, \forall n, c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \le 1, \forall c, t, \\
& C4: \sum_{n} x_{n}^{n,c} \ge 1, \forall c,$

MA-BH

Performance evaluation

Performance Evaluation

Simulation Parameters Settings

PARAMETERS	VALUES
Satellite altitude	700 km
Downlink frequency	11.7 GHz
Number of satellites, N_0	12
System bandwidth, B	500 MHz
Total number of cells, M	168
Number of cells covered by each satellite, C	19
Number of spotbeams, K	4
Satellite payload capacity	2000 Mbps
Poisson arrival rate of cell traffic	$50 \text{ Mbps} \sim 150 \text{ Mbps}$
Length of queue buffer	10 timeslots
Timeslot duration	2 ms
Weight factor α	0.5
Noise power spectral density N_0	-171.6 dBm/Hz
Satellite 3 dB beamwidth θ_{3dB}	3°
Training Episodes	6000
Timeslots every episode	100
Learning rate, η	0.001
Replay buffer size, $ R $	10000
Target network update frequency, $ H $	200
Minibatch size	128
Discount factor, γ	0.95
Initial exploration rate	0.5
Final exploration rate	0.02
Optimizer	Adam

Performance Metrics

Baseline Algorithms

- Random Beam Hopping [4](R-BH): In the R-BH method, each satellite randomly selects 4 cells from the 19 available cells to serve in each time slot.
- ➤ Greedy Beam Hopping [5](G-BH): In the G-BH method, each satellite selects the 4 cells with the highest traffic volume from its coverage area to serve in each time slot.
- Periodic Beam Hopping [2](P-BH) : In the P-BH method, each satellite periodically serves different cells according to a predetermined beam-hopping sequence.
- [4]. Z. Lin, Z. Ni, L. Kuang, C. Jiang and Z. Huang, "Dynamic Beam Pattern and Bandwidth Allocation Based on Multi-Agent Deep Reinforcement Learning for Beam Hopping Satellite Systems," in IEEE Transactions on Vehicular Technology, vol. 71, no. 4, pp. 3917-3930, April 2022.
- [5]. J. Zhang et al., "System-Level Evaluation of Beam Hopping in NR-Based LEO Satellite Communication System," 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 2023.
- > *System throughput*: the total number of packets transmitted by the system per unit time.
- > Load gap between satellites: the difference between the load of the largest and least load satellite in a multi-satellite system
- > **Delay:** the average queuing delay of packets in the cache queue for cells.

2025/1/3

Globecom 2024

Performance Evaluation

Globecom 2024

Luo J @CQUPT

Conclusions

Conclusion

- Propose a **multi-agent beam hopping algorithm** for a LEO satellite system, based on **a digital-twin architecture**.
- Consider both **inter-satellite interference** and **intra-satellite ones**.
- Optimize jointly the system load gap and queue delay to achieve
 load balance between satellites while keeping high overall
 throughout.

Any comments and discussion is welcome

My Email: <u>Luojt2008@gmail.com</u>; <u>Luojt@cqupt.edu.cn</u>